Motion Models (cont)

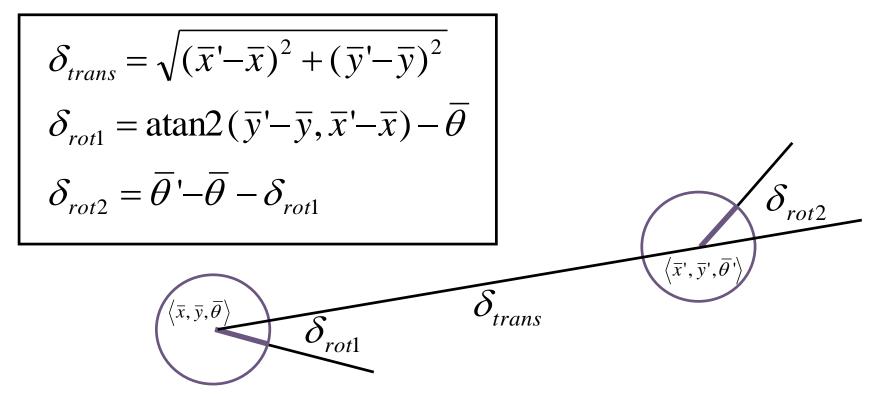
2/27/2017

Odometry Model

bar indicates odometer coordinates

- Robot moves from
- Odometry information

$$\overline{x}, \overline{y}, \overline{\theta}
angle$$
 to $\langle \overline{x}', \overline{y}', \overline{\theta}'
angle$.
 $u = \langle \delta_{rot1}, \delta_{rot2}^{\cdot}, \delta_{trans}
angle$



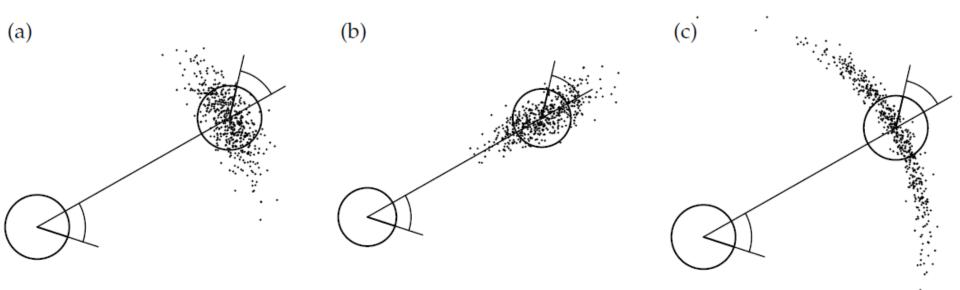
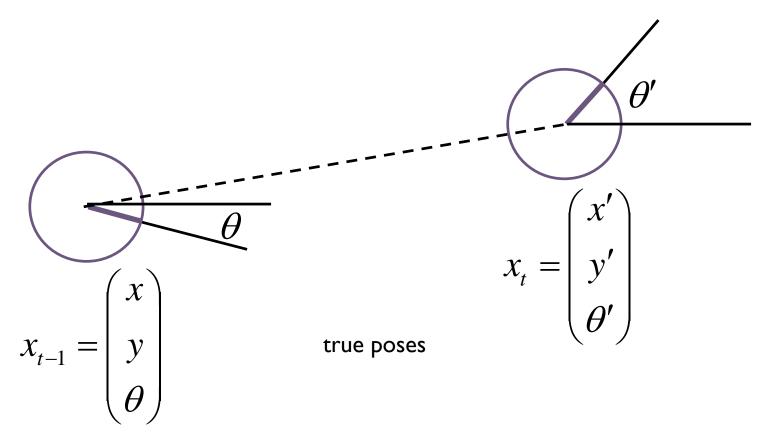
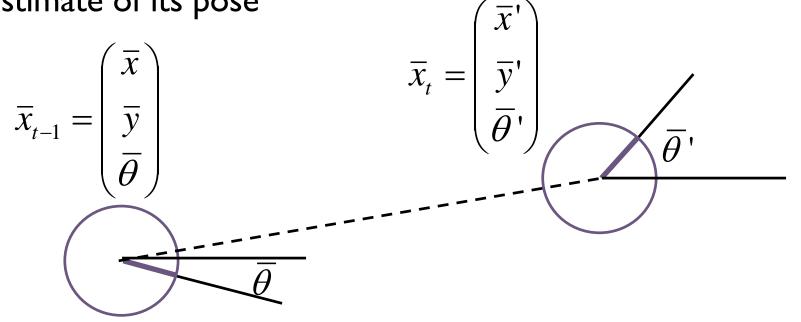


Figure 5.9 Sampling from the odometry motion model, using the same parameters as in Figure 5.8. Each diagram shows 500 samples.

• the key to computing $p(x_t | u_t, x_{t-1})$ for the odometry motion model is to remember that the robot has an internal estimate of its pose



• the key to computing $p(x_t | u_t, x_{t-1})$ for the odometry motion model is to remember that the robot has an internal estimate of its pose (\overline{x})



robot's internal poses

the control vector is made up of the three motions made by the robot

$$u_{t} = \begin{pmatrix} \delta_{trans} \\ \delta_{rot1} \\ \delta_{rot2} \end{pmatrix}$$

 \blacktriangleright use the robot's internal pose estimates to compute the δ

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$
$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$
$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

 \blacktriangleright use the true poses to compute the δ

$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$
$$\hat{\delta}_{rot1} = \operatorname{atan2}(y'-y, x'-x) - \theta$$
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

as with the velocity motion model, we have to solve the inverse kinematics problem here

recall the noise model

$$\hat{\delta}_{trans} - \delta_{trans} = \varepsilon_{\alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 (\hat{\delta}_{rot1}^2 + \hat{\delta}_{rot2}^2)}$$
$$\hat{\delta}_{rot1} - \delta_{rot1} = \varepsilon_{\alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2}$$
$$\hat{\delta}_{rot2} - \delta_{rot2} = \varepsilon_{\alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2}$$

which makes it easy to compute the probabilities of observing the differences in the $\boldsymbol{\delta}$

$$p_{1} = \operatorname{prob}(\hat{\delta}_{trans} - \delta_{trans}, \alpha_{3} \ \hat{\delta}_{trans}^{2} + \alpha_{4} \ (\hat{\delta}_{rot1}^{2} + \hat{\delta}_{rot2}^{2}))$$

$$p_{2} = \operatorname{prob}(\hat{\delta}_{rot1} - \delta_{rot1}, \alpha_{1} \ \hat{\delta}_{rot1}^{2} + \alpha_{2} \ \hat{\delta}_{trans}^{2})$$

$$p_{3} = \operatorname{prob}(\hat{\delta}_{rot2} - \delta_{rot2}, \alpha_{1} \ \hat{\delta}_{rot2}^{2} + \alpha_{2} \ \hat{\delta}_{trans}^{2})$$

Calculating the Posterior Given x, x', and u

Algorithm motion_model_odometry(x,x',u) **|**. 2. $\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$ 3. $\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \theta$ odometry values (u) 4. $\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$ 5. $\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$ 6. $\hat{\delta}_{rot1} = \operatorname{atan2}(y'-y, x'-x) - \overline{\theta}$ values of interest (x,x')7. $\hat{\delta}_{rot^2} = \theta' - \theta - \hat{\delta}_{rot^2}$ 8. $p_1 = \operatorname{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$ 9. $p_2 = \operatorname{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 (\hat{\delta}_{rot1}^2 + \hat{\delta}_{rot2}^2))$ $p_3 = \text{prob}(\delta_{\text{rot}2} - \hat{\delta}_{\text{rot}2}, \alpha_1 \hat{\delta}_{\text{rot}2}^2 + \alpha_2 \hat{\delta}_{\text{trans}}^2)$

II. return $p_1 \cdot p_2 \cdot p_3$

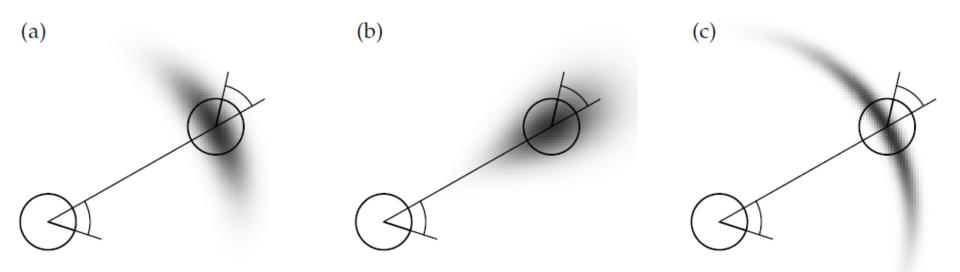
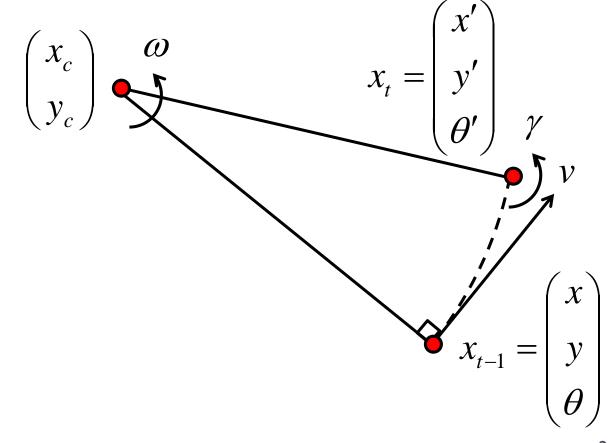
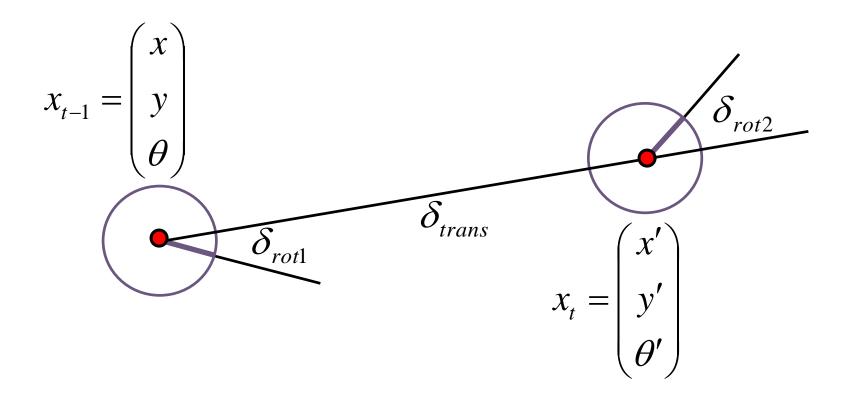


Figure 5.8 The odometry motion model, for different noise parameter settings.

- velocity motion model
 - control variables were linear velocity, angular velocity about ICC, and final angular velocity about robot center



- odometric motion model
 - control variables were derived from odometry
 - ▶ initial rotation, translation, final rotation



- for both models we assumed the control inputs u_t were noisy
- the noise models were assumed to be zero-mean additive with a specified variance

$$\begin{pmatrix} \hat{v} \\ \hat{\omega} \end{pmatrix} = \begin{pmatrix} v \\ \omega \end{pmatrix} + \begin{pmatrix} v_{\text{noise}} \\ \omega_{\text{noise}} \end{pmatrix}$$

actual commanded noise velocity velocity

$$\operatorname{var}(v_{\text{noise}}) = \alpha_1 v^2 + \alpha_2 \omega^2$$
$$\operatorname{var}(\omega_{\text{noise}}) = \alpha_3 v^2 + \alpha_4 \omega^2$$

- for both models we assumed the control inputs u_t were noisy
- the noise models were assumed to be zero-mean additive with a specified variance

$$\begin{pmatrix} \hat{\delta}_{trans} \\ \hat{\delta}_{rot1} \\ \hat{\delta}_{rot2} \end{pmatrix} = \begin{pmatrix} \delta_{trans} \\ \delta_{rot1} \\ \delta_{rot2} \end{pmatrix} + \begin{pmatrix} \delta_{trans,noise} \\ \delta_{rot1,noise} \\ \delta_{rot2,noise} \end{pmatrix}$$

actual commanded noise motion motion

$$\operatorname{var}(\delta_{trans,noise}) = \alpha_3 \ \hat{\delta}_{trans}^2 + \alpha_4 \ (\hat{\delta}_{rot1}^2 + \hat{\delta}_{rot2}^2)$$
$$\operatorname{var}(\delta_{rot1,noise}) = \alpha_1 \ \hat{\delta}_{rot1}^2 + \alpha_2 \ \hat{\delta}_{trans}^2$$
$$\operatorname{var}(\delta_{rot2,noise}) = \alpha_1 \ \hat{\delta}_{rot2}^2 + \alpha_2 \ \hat{\delta}_{trans}^2$$

• for both models we studied how to derive $p(x_t | u_t, x_{t-1})$

given

- x_{t-1} current pose
- u_t control input
- x_t new pose

find the probability density that the new pose is generated by the current pose and control input

required inverting the motion model to compare the actual with the commanded control parameters

• for both models we studied how to sample from $p(x_t | u_t, x_{t-1})$

given

- x_{t-1} current pose
- u_t control input

generate a random new pose x_t consistent with the motion model

• sampling from $p(x_t | u_t, x_{t-1})$ is often easier than calculating $p(x_t | u_t, x_{t-1})$ directly because only the forward kinematics are required